Journal Articles (Google Scholar Profile)
J. Huang, Z. Yang, V. Murugesan, E. Walter, A. Hollas, B. Pan, R. S. Assary, I. A. Shkrob, X. Wei,* Z. Zhang, Spatially Constrained Organic Diquat Anolyte for Stable Aqueous Flow Batteries. ACS Energy Letters, 2018, 3, 2533-2538. (DOI)
[48]
[47]
A. Hollas, X. Wei,* M. Vijayakumar, Z. Nie, B. Li, D. Reed, J. Liu, V. Sprenkle, W. Wang, A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries. Nature Energy, 2018, 3, 508-514. (DOI)
[46]
J. Huang, W. Duan, J. Zhang, I. A. Shkrob, R. S. Assary, B. Pan, C. Liao, Z. Zhang, X. Wei,* L. Zhang, Substituted Thiazines as Energy-Rich Anolytes for Nonaqueous Redox Flow Cells. Journal of Materials Chemistry A, 2018, 6, 6251-6254. (DOI)
[45]
W. Duan, B. Li, D. Lu, X. Wei, Z. Nie, M. Vijayakumar, J. P. Kizewski, A. Hollas, V. Sprenkle, W. Wang, Towards an all-vanadium redox flow battery with higher theoretical volumetric capacities by utilizing the VO2+/V3+ couple. Journal of Energy Chemistry, 2018, 27, 1381-1385. (DOI)
[44]
J. Huang, Z. Yang, M. Vijayakumar, W. Duan, A. Hollas, B. Pan, W. Wang, X. Wei,* L. Zhang, A Two-Electron Nonaqueous Organic Redox Flow Battery. Advanced Sustainable Systems, 2018, 2, 1700131. (DOI)
Before joining IUPUI
X. Wei,* W. Pan, W. Duan, A. Hollas, Z. Yang, B. Li, Z. Nie, J. Liu, D. Reed, W. Wang, V. Sprenkle, Materials and Systems for Organic Redox Flow Batteries: Status and Challenges. ACS Energy Letters, 2017, 2, 2187. (DOI)
[43]
[42]
J. Zhang, Z. Yang, I. A. Shkrob, R. S. Assary, S. Tung, B. Silcox, W. Duan, J. Zhang, C. Liao, Z. Zhang, W. Wang, L. A. Curtiss, L. Thompson, X. Wei,* L. Zhang, Annulated dialkoxybenzenes as catholyte materials for nonaqueous redox flow batteries: achieving high chemical stability through bicyclic substitution. Advanced Energy Materials2017, 7, 1701272. (DOI)
An Invited Contribution.
[41]
J. Luo, A. Sam, B. Hu, C. DeBruler, X. Wei, W. Wang, T. L. Liu, Unraveling pH dependent cycling stability of ferricyanide/ferrocyanide in redox flow batteries. Nano Energy, 2017, 42, 215. (DOI)
Cover Story.
[40]
W. Duan, J. Huang, J. A. Kowalski, I. A. Shkrob, M. Vijayakumar, E. Walter, B. Pan, Z. Yang, J. D. Milshtein, B. Li, C. Liao, Z. Zhang, W. Wang, J. Liu, J. S. Moore, F. Brushett, L. Zhang, X. Wei,* “Wine-dark sea” in an organic flow battery: storing negative charge in 2,1,3-benzothiadiazole radicals leads to improved cyclability. ACS Energy Letters2017, 2, 1156. (DOI)
Highlighted in ACS Energy Letters Editorial
[39]
W. Duan, R. S. Vemuri, D. Hu, Z. Yang, X. Wei,* A protocol for electrochemical evaluations and state of charge diagnostics of a symmetric organic redox flow battery. Journal of Visualized Experiments, 2017, Article Number 55171. (DOI)
K. S. Han, N. N. Rajput, M. Vijayakumar; X. Wei, W. Wang, J. Hu, K. Persson, K. Mueller, Preferential solvation of an asymmetric redox molecule. Journal of Physical Chemistry C 2016, 120, 27834. (DOI)
[38]
An Invited Contribution.
M. Vijayakumar, Q. Luo, R. Lloyd, Z. Nie, X. Wei, B. Li, V. Sprenkle, J. Londono, M. Unlu, W. Wang, Tuning the perfluorosulfonic acid membrane morphology for vanadium redox flow batteries. ACS Applied Materials & Interfaces, 2016, 8, 34327. (DOI)
[37]
X. Wei,* W. Duan, J. Huang, L. Zhang, B. Li, D. Reed, V. Sprenkle, W. Xu, W. Wang, A stable, high-current nonaqueous organic redox flow battery. ACS Energy Letters, 2016, 1, 705. (DOI)
[36]
W. Duan, R. S. Vemuri, J. D. Milshtein, S. Laramie, R. D. Dmello, J. Huang, L. Zhang, D. Hu, M. Vijayakumar, W. Wang, J. Liu, L. Thompson, K. Smith, J. S. Moore, F. R. Brushett, X. Wei,* A symmetric organic-based nonaqueous redox flow battery and its state of charge diagnostics by FTIR. Journal of Materials Chemistry A, 2016, 4, 5448. (DOI)
[35]
X. Wei,* G. Xia, B. Kirby, E. Thomsen, B. Li, Z. Nie, G. G. Graff, J. Liu, V. Sprenkle, W. Wang, An aqueous redox flow battery based on neutral alkali metal ferri/ferrocyanide and polysulfide electrolytes. Journal of the Electrochemical Society 2016, 163, A5150. (DOI)
[34]
Hot Article for 2016
T. Liu, X. Wei, Z. Nie, V. Sprenkle, W. Wang, A total organic aqueous redox flow battery employing low cost and sustainable methyl viologen (MV) anolyte and 4-HO-TEMPO catholyte. Advanced Energy Materials, 2016, 6, 1501449. (DOI)
[33]
X. Deng, M. Hu, X. Wei, W. Wang, K. T. Mueller, Z. Chen, J. Hu, Nuclear magnetic resonance studies on the solvation structures of a high-performance nonaqueous redox flow electrolyte. Journal of Power Sources, 2016, 308, 172. (DOI)
[32]
J. Huang, B. Pan, W. Duan, X. Wei, R. Assary, F. R. Brushett, M. S. Ferrandon, C. Liao, Z. Zhang, W. Wang, A. K. Burrell, L. A. Curtiss, J. S. Moore, I. A. Shkrob, L. Zhang, The lightest organic radical cation for charge storage in redox flow batteries. Scientific Reports, 2016, 5, 32102. (DOI)
[31]
X. Wei, L. Cosimbescu, W. Xu, J. Hu, M. Vijayakumar, J. Feng, M. Y. Hu, X. Deng, J. Xiao, J. Liu, V. Sprenkle, W. Wang, Towards high-performance nonaqueous redox flow electrolyte via ionic modification of active species. Advanced Energy Materials 2015, 5, 1400678. (DOI)
[30]
Cover Story.
X. Wei,* W. Xu, J. Huang, L. Zhang, E. Walter, C. Lawrence, M. Vijayakumar, W. A. Henderson, T. Liu, L. Cosimbescu, B. Li, V. Sprenkle, W. Wang, Radical compatibility with nonaqueous electrolytes and its impact on an all-organic redox flow battery. Angewandte Chemie International Edition 2015, 54, 8684. (DOI)
[29]
X. Wei, B. Li, W. Wang, Porous polymeric composite separators for redox flow batteries. Polymer Reviews 2015, 55, 247. (DOI)
[28]
H. Pan, X. Wei, W. A. Henderson, Y. Shao, J. Chen, P. Bhattacharya, J. Xiao, J. Liu, On the way toward understanding solution chemistry of lithium polysulfides for high energy Li–S redox flow batteries. Advanced Energy Materials2015, 5, 1500113. (DOI)
[27]
L. Cosimbescu, X. Wei, M. Vijayakumar, W. Xu, M. L. Helm, S. D. Burton, C. M. Sorensen, J. Liu, V. Sprenkle, W. Wang, Anion-tunable properties and electrochemical performance of functionalized ferrocene compounds. Scientific Reports 2015, 5, 14117. (DOI)
[26]
D. Reed, E. Thomsen, W. Wang, Z. Nie, B. Li, X. Wei, B. Koeppel, V. Sprenkle, Performance of Nafion N115, Nafion NR-212, and Nafion NR-211 in a 1 kW class all vanadium mixed acid redox flow battery. Journal of Power Sources2015, 285, 425. (DOI)
[25]
X. Deng, M. Y. Hu, X. Wei, W. Wang, Z. Chen, J. Liu, J. Hu, Natural abundance 17O nuclear magnetic resonance and computational modeling studies of lithium based liquid electrolytes. Journal of Power Sources 2015, 285, 146. (DOI)
[24]
M. Vijayakumar, N. Govind, B. Li, X. Wei, Z. Nie, S. Thevuthasan, V. Sprenkle, W. Wang, Aqua-vanadyl ion interaction with Nafion membranes. Frontiers in Energy Research 2015, 3:10. (DOI)
[23]
X. Wei, W. Xu, M. Vijayakumar, L. Cosimbescu, T. Liu, V. Sprenkle, W. Wang, TEMPO-based catholyte for high energy density nonaqueous redox flow batteries. Advanced Materials 2014, 26, 7649. (DOI)
[22]
B. Li, M. Gu, Z. Nie, X. Wei, C. Wang, V. Sprenkle, W. Wang, Nanorod niobium oxide as powerful catalysts for an all vanadium redox flow battery. Nano Letters 2014, 14, 158. (DOI)
[21]
B. Li, Q. Luo, X. Wei, Z. Nie, E. Thomsen, B. Chen, V. Sprenkle, W. Wang, Capacity decay mechanism of microporous separator-based all-vanadium redox flow batteries and its recovery. ChemSusChem 2014, 7, 577. (DOI)
[20]
K. S. Han, N. N. Rajput, X. Wei, W. Wang, J. Hu, K. Persson, K. T. Mueller, Diffusional motion of redox centers in carbonate electrolytes. Journal of Chemical Physics 2014, 141, 104509. (DOI)
[19]
X. Wei, Z. Nie, Q. Luo, B. Li, B. Chen, K. Simmons, V. Sprenkle, W. Wang, Nanoporous polytetrafluoroethylene/silica composite separator as a high-Performance all-vanadium redox flow battery membrane. Advanced Energy Materials 2013, 3, 1215. (DOI)
[18]
X. Wei, Z. Nie, Q. Luo, B. Li, V. Sprenkle, W. Wang, Polyvinyl chloride/silica nanoporous composite separator for all-vanadium redox flow battery applications. Journal of the Electrochemical Society 2013, 160, A1215. (DOI)
[17]
X. Wei, Q. Luo, B. Li, Z. Nie, E. Miller, J. Chambers, V. Sprenkle, W. Wang, Performance valuation of microporous separator in Fe/V redox flow battery. ECS Transactions 2013, 45, 17. (DOI)
[16]
B. Li, M. Gu, Z. Nie, Y. Shao, Q. Luo, X. Wei, X. Li, J. Xiao, C. Wang, V. Sprenkle, W. Wang, Bismuth nanoparticle decorating graphite felt as high-performance electrode for all-vanadium redox flow battery. Nano Letters 2013, 13, 1330. (DOI)
[15]
Q. Luo, L. Li, W. Wang, Z. Nie, X. Wei, B. Li, Z. Yang, V. Sprenkle, Capacity decay and remediation of nafion-based all-vanadium redox flow batteries. ChemSusChem 2013, 6, 268. (DOI)
[14]
S. Kim, E. Thomsen, G. Xia, Z. Nie, J. Bao, K. Recknagle, W. Wang, V. Viswanathan, Q. Luo, X. Wei, A. Crawford, G. Coffey, V. Sprenkle, 1 kW/1 kWh advanced vanadium redox flow battery utilizing mixed acid electrolytes. Journal of Power Sources 2013, 237, 300. (DOI)
[13]
B. Li, L. Li, W. Wang, Z. Nie, B. Chen, X. Wei, Q. Luo, Z. Yang, V. Sprenkle. Fe/V redox flow battery electrolyte investigation and optimization. Journal of Power Sources 2013, 229, 1. (DOI)
[12]
X. Wei, L. Li, Q. Luo, Z. Nie, W. Wang, B. Li, G. Xia, E. Miller, J. Chambers, Z. Yang, Microporous separators for Fe/V redox flow batteries. Journal of Power Sources 2012, 218, 39. (DOI)
[11]
W. Wang, Q. Luo, B. Li, X. Wei, L. Li, Z. Yang, Recent progress in redox flow battery research and development. Advanced Functional Materials 2012, 23, 970. (DOI)
[10]
W. Wang, Z. Nie, B. Chen, F. Chen, Q. Luo, X. Wei, G. Xia, M. Skyllas-Kazacos, L. Li, Z. Yang, A new Fe/V redox flow battery using a sulfuric/chloric mixed-acid supporting electrolyte. Advanced Energy Materials 2012, 2, 487. (DOI)
[9]
Q. Luo, L. Li, Z. Nie, W. Wang, X. Wei, B. Li, B. Chen, Z. Yang, In-situ investigation of vanadium ion transport in redox flow battery. Journal of Power Sources 2012, 218, 15. (DOI)
[8]
W. Wang, L. Li, Z. Nie, B. Chen, Q. Luo, Y. Shao, X. Wei, F. Chen, .G. Xia, Z. Yang, A new hybrid redox flow battery with multiple redox couples Journal of Power Sources 2012, 216, 99. (DOI)
[7]
C. Fujimoto, S. Kim, R. Stains, X. Wei, L. Li, Z. G. Yang, Vanadium redox flow battery efficiency and durability studies of sulfonated Diels Alder poly(phenylene)s. Electrochemistry Communications 2012, 20, 48. (DOI)
[6]
X. Wei,* W. Tong, V. Fidler, M. B. Zimmt, Reactive capture of gold nanoparticles by strongly physisorbed monolayers on graphite. Journal of Colloid and Interface Science 2012, 387, 221. (DOI)
[5]
W. Tong, X. Wei, and M. B. Zimmt, Dipolar control of monolayer morphology on graphite: self-assembly of anthracenes with odd length diether side chains. Journal of Physical Chemistry C 2009, 113, 17104. (DOI)
[4]
Y. Wei, W. Tong, C. Wise, X. Wei, K. Armbrust, M. B. Zimmt, Dipolar control of monolayer morphology: spontaneous SAM patterning. Journal of the American Chemical Society 2006, 128, 13362. (DOI)
[3]
[2]
H. Li, C. Xia, M. Zhu, Z. Zhou, X. Wei, and G. Meng, Increasing the sinterability of tape cast oxalate-derived doped ceria powder by ball milling. Ceramics International 2007, 33, 201. (DOI)
[1]
H. Li, C. Xia, X. Fang, X. He, X. Wei, and G. Meng, Co-sintering of SDC/NiO-SDC bi-layers prepared by tape casting. Key Engineering Materials 2005, 280-283, 779. (DOI)
Book Chapters
W. Wang, X. Wei, D. Choi, X. Lu, Z. Yang, C. Sun, “Electrochemical cells for medium- and large-scale energy storage: fundamentals”, Chapter 1 in “Advances in Batteries for Medium and Large-Scale Energy Storage”, edited by C. Menictas, M. Skyllas-Kazacos and L. T. Mariana, 2014. ISBN: 978-1-78242-013-2. Woodhead Publishing Limited, Cambridge, UK.
[1]